If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1y^2+12y-1=0
We add all the numbers together, and all the variables
y^2+12y-1=0
a = 1; b = 12; c = -1;
Δ = b2-4ac
Δ = 122-4·1·(-1)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{37}}{2*1}=\frac{-12-2\sqrt{37}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{37}}{2*1}=\frac{-12+2\sqrt{37}}{2} $
| x-2/5=3/4 | | X²+x-3=0 | | 1-4n=9-3n | | 2.71^(2x)=83 | | -5x+9=6x-123 | | (x/4)-5=-8 | | X+3+7x=67 | | 7(-6x-3)=357 | | 1+4x+-5x=12 | | -5(2n-4)=40 | | 1+4×+(-5x)=12 | | 2y+25=6y+5 | | (x-4)^2-9=5 | | 7+4x-x=-26 | | 12x+40+8x=180 | | -5/9u=20 | | 12=x-4x×7 | | x+40=30x-1 | | 14x+35=15x-50 | | 13+14x=15x+5 | | 4×+8=3x-5 | | 2n^2-10=6 | | 3y=48-9y | | 5r−4r=9 | | -42-5x=6-9x | | 2a^2=3-5a | | 2(6k-6)=-39 | | x-(x*0.4)=440000 | | 0=3a+ | | 2x+1/9=3x-2/8 | | 2m^2-4=2 | | 5x-1=2x=11 |